

Prevalence of foodborne pathogens in meat samples in Palestine

^{1*}Adwan, G. M., ²Alqarem, B. R. and ¹Adwan, K. M.

¹Department of Biology and Biotechnology, An-Najah National University, P.O. Box (7)-Nablus, Palestine ²Faculty of Graduate Studies, Department of Biological Science, An-Najah National University, P.O. Box (7)-Nablus, Palestine

<u>Article history</u>

<u>Abstract</u>

Received: 26 December 2014 Received in revised form: 6 March 2015 Accepted: 13 March 2015

Keywords

Foodborne pathogens Salmonella Enterotoxigenic S. aureus E. coli pathotypes Foodborne diseases occur worldwide, including those acquired through the consumption of contaminated meat. This study aimed to investigate the prevalence of enterotoxigenic *Staphylococcus aureus, Salmonella* and *Escherichia coli* pathotypes in different meat types. Forty meat samples fresh (n=35) and frozen (n=5) were purchased from local markets in Jenin district, Palestine. Multiplex PCR was used to detect enterotoxigenic *S. aureus, Salmonella* and *E. coli* pathotypes. Total mesophilic aerobic bacterial count ranged between 4.3 log₁₀ to 5.7 log₁₀ cfu/g for frozen meat and 6.95 log₁₀ to 7.78 log₁₀ cfu/g for fresh meat. The prevalence of *S. aureus, Salmonella* and *E. coli* was 30%, 25% and 95%, respectively. Among tested *S. aureus* strains 75% were enterotoxigenic. Two other samples of non *S. aureus (FemA')* were enterotoxigenic; one was *sec+* and the other was *see+*. The results also showed that 89.5% of meat samples contaminated with *E. coli* that belonge to enterohemorrhagic *E. coli* (EHEC), enteropathogenic *E. coli* (EPEC), enteroaggregative *E. coli* (EAEC), enterotoxigenic *E. coli* (ETEC), diffuse adherent *E. coli* (DAEC) pathotypes. According to these results, it is recommended to establish a suitable surveillance program for microbial contamination with all foodborne pathogens.

© All Rights Reserved

Introduction

Food is considered the most important energy source for humans and animals. Meat may be easily contaminated with different pathogens if not handled appropriately (Mead et al., 1999). The World Health Organization (WHO) defines foodborne illnesses as diseases, usually either toxic or infectious in nature, caused by agents that enter the human body through the process of food ingestion. There are more than 200 known causative agents can cause foodborne diseases; these include bacteria, parasites, viruses, prions, toxins and metals. The symptoms and severity of foodborne illnesses vary, range from mild gastroenteritis to life-threatening neurologic, hepatic, and renal syndromes (Mead et al., 1999). In 2005, WHO reported that 1.8 million people died from diarrheal diseases and a high proportion of these cases due to contamination of food and drinking water (WHO, 2008). Although large number of bacterial strains have been identified to be involved in foodborne diseases, many other new emerging strains also reported (WHO, 2008). In developed counties, the annual incidence of microbiological foodborne illnesses is estimated to be around 30% of

*Corresponding author. Email: *adwang@najah.edu* Fax: +970-9-2347488 the population (De Guisti et al., 2007).

In Palestine, a total of 250 stool samples were collected during an outbreak from symptomatic and asymptomatic patients in northern Palestine in 1999. A total of 176 (70.4%) were identified as Shiga toxigenic E. coli (STEC), of the 176 STEC isolates, 124 (70.5%) were of serotype O157 (Adwan et al., 2002). Another study on raw beef samples reported that 14.4% of samples were contaminated with STEC (Adwan and Adwan, 2004). Enterotoxigenic S. aureus strains were also reported in raw milk of clinically healthy sheep and cows (Adwan et al., 2005). Another study on an outbreak of acute gastroenteritis and diarrhea among children in Gaza strip showed that various enteropathogens including; Shigella spp, Campylobacter coli/jejuni, E. coli O157:H7 and Salmonella spp were identified using conventional and molecular techniques (Abu Elamreen et al., 2007). This study aimed to detect enterotoxigenic S. aureus (ETSA), Salmonella spp and E. coli pathotypes from meat samples using PCR technique and to estimate the level of bacterial contamination in these samples.

Organism	Target Gene	Oligonucleotide sequence (5? 3)	Amplicon	Annealing	Reference	Primer
			Size (bp)	temperature		mix
E. coli	Mdh	ACT GAA AGG CAA ACA GCC AGG C CGT TCT GTT CAA ATG CGC TCA GG	392	59°C	Hsu et al., 2006	1
<i>Sabnonella</i> spp.	HindIII DNA fragment	GTCACGGAAGAAGAGAAAATCCGTACG GGGAGTCCAGGTTGACGGAAAATTT	375	56°C	Tsen et al., 1994	2
S. aureus	FemA	TATGAGTTAAAGCTTGCTGAAGGTT TTACCAGCA TTACCTGTA ATCTCG	296	56°℃	Kawasaki et al., 2012	2
ETSA	sea	CCTTTGGAAACGGTTAAAACG TCTGAACCTTCCCATCAAAAAC	127	55℃	Becker et al., 1998	3
ETSA	seb	TCGCA TCAA ACTGACAAACG GCAGGTA CTCTATAAGTGCCTGC	477	55°C	Becker et al., 1998	3
ETSA	sec	CTCAAGAACTAGACATAAAAGCTAGG TCAAAATCGGATTAACATTA TCC	271	55°C	Becker et al., 1998	3
ETSA	sed	CTAGTTTGGTAATATCTCCTTTAAACG TTAATGCTATATCTTATAGGGTAAACATC	319	55°C	Becker et al., 1998	3
ETSA	see	CAGTACCTA TAGA TAAAGTTAAAACAAGC TAACTTACCGTGGACCCTTC	178	55 ℃	Becker et al., 1998	3
EHEC	VT	GAGCGAAATAATTTA TATGTG TGATGA TGGCAATTCAGTAT	518	59℃	Gómez-Duarte et al., 2009	4
EHEC, EPEC	eae	CTGAACGGCGATTACGCGAA CGAGACGATACGATCCAG	917	59°C	Gómez-Duarte et al., 2009	4
EPEC	bfpA	AATGGTGCTTGCGCTTGCTGC GCCGCTTTATCCAACCTGGTA	326	59°C	Gómez-Duarte et al., 2009	4
EAEC	aggR	GTATACACAAAAGAAGGAAGC ACAGAATCGTCAGCATCAGC	254	59°C	Gómez-Duarte et al., 2009	4
ETEC	LT	GCACACGGAGCTCCTCAGTC TCCTTCATCCTTTCAATGGCTTT	218	59°C	Gómez-Duarte et al., 2009	5
ETEC	ST	GCTAAACCAGTAGAG(C)TCTTCAAAA CCCGGTACAG(A)GCAGGATTACAACA	147	59℃	Gómez-Duarte et al., 2009	5
DAEC	daaE	GAA CGTTGGTTAA TGTGGGGTAA TATTCACCGGTCGGTTATCAGT	542	59℃	Gómez-Duarte et al., 2009	5

Table 1. Target genes for PCR amplification, amplicon size, primer sequences and annealing temperature

Materials and Methods

Collection of samples

Forty meat samples were purchased randomly during May-June 2014, from different localities in Jenin district. These included 35 fresh samples (13 beef, 13 chicken and 9 turkey) and 5 frozen samples (2 beef, 2 chicken and 1 turkey). Samples were transferred under aseptic conditions to the Microbiology Laboratory, Department of Biology at An-Najah National University-Nablus, Palestine.

Sample preparation and bacterial culturing

A meat sample of 10 g was homogenized in 90 ml Tryptone Soya Broth-Yeast Extarct (TSBYE) medium. Six of serial decimal dilutions of sample with sterile normal saline were cultured in duplicates on nutrient agar. The plates were then incubated at 37°C for 24 h before colonies were counted. At the same time, 5 ml of TSBYE was incubated at 37°C/18-24 h and used for DNA extraction. The same sample subcultured on Xylose-Lysine Deoxycholate (XLDA), Mannitol salt agar (MSA) and MacConkey for further confirmation.

DNA extraction

DNA was prepared for PCR according to the method described previously with some modifications (Adwan *et al.*, 2013). Briefly, 1.5 ml from overnight TSBYE broth was centrifuged for each DNA extraction preparation, the pellet washed twice with 1 ml of 1X Tris-EDTA buffer (10 mM Tris-HCl, 1 mM EDTA [pH 8.0]). The pellet was then resuspended in

0.5 ml of sterile distilled H_2O , and boiled for 10-15 min. The cells then immediately were incubated on ice for 10 min. The debris was pelleted by centrifugation at 11,500 × g for 5 min. DNA concentration was determined using a spectrophotometer and DNA samples were stored at -20°C until use.

Detection of S. aureus and Salmonella spp.

The used primers targeted Salmonella speciesspecific 1.8 kb HindIII DNA fragment sequence and S. aureus femA gene are shown in Table 1. (Tsen et al. 1994; Kawasaki et al., 2012). PCR reaction mix $(25 \,\mu\text{L})$ was performed using 12.5 μL of PCR premix with MgCl₂ (ReadyMixTM Taq PCR Reaction Mix with MgCl₂, Sigma), 0.4μ M of each primer, and 2μ L DNA template. DNA amplification was performed using thermal cycler (Mastercycler Personal, Eppendorf) according to the following conditions: initial denaturation for 2 min at 94°C followed by 40 cycles at 94°C for 20 sec for denaturation, annealing at 56°C for 30 sec and extension at 72°C for 30 sec. Final extension was carried out at 72°C for 5 min. The amplified products were examined by 2% agarose gel electrophoresis. A DNA ladder of 100 bp was also included in all gels (100 bp DNA ladder RTU, GeneDireX).

Detection of staphylococcal enterotoxin (sea-see) genes

Primer nucleotide sequences and expected sizes of amplicons for staphylococcal enterotoxin genes *sea, seb, sec, sed* and *see* are presented in Table 1 (Becker *et al.* 1998). The PCR reaction mix and

Source	No. of samples	Microorganism					
		Salmonella spp. (Hind III DNA fragment ⁺)	S. aureus (FemA ⁺)	Salmonella spp. and S. aureus (FemA ⁺ +Hind III DNA fragment)			
Beef	(n=15)	1 (6.6%)	5 (33.3%)	0(0%)			
Chicken	(n=15)	4 (26.6%)	2 (13.3%)	2(13.3%)			
Turkey meat	(n=10)	2 (20%)	2 (20%)	1(10%)			
Total %	(n=40)	7 (17.5%)	9 (22.5%)	3(7.5%)			

Table 2. Distribution of Salmonella spp. and S. aureus in different meat samples using PCR

Table 3. Distribution of staphylococcal enterotoxin genes (sea-see) in meat samples

			staphylococcal enterotoxin genes					
Source	No. of samples	S. aureus	sea ⁺	Seb ⁺	sec ⁺	sed ⁺	see ⁺	sea ⁺ + see ⁺
	sumpres	gene)						
Beef	(n=15)	33.3% (5/15)	20% (1/5)	0% (0/5)	20% (1/5)	20% (1/5)	20% (1/5)	20% (1/5)
Chicken	(n=15)	26.7% (4/15)	25% (1/4)	0% (0/4)	0% (0/4)	0% (0/4)	50% (2/4)	25% (1/4)
Turkey meat	(n=10)	30% (3/10)	0% (0/3)	0% (0/3)	0% (0/3)	0% (0/3)	0% (0/3)	0% (0/3)
Total %	n=40	30% (12/40)	16.7% (2/12)	0% (0/12)	8.3% (1/12)	8.3%(1/12)	25% (3/12)	16.7% (2/12)

detection of amplified fragments were carried out as above. DNA amplification was performed using thermal cycler as follows: initial denaturation for 2 min at 94°C followed by 30 cycles at 94°C for 1min for denaturation, annealing at 55°C for 1 min and extension at 72°C for 2 min. Final extension was carried out at 72°C for 5 min.

Detection of E. coli mdh gene

E. coli was identified by PCR with specific primers for malate dehydrognase gene *(mdh)* as described previously (Hsu *et al.* 2006). Primer nucleotide sequences and expected size of amplicon are presented in Table 1. The PCR reaction mix and detection of amplified fragments were carried out as above. DNA amplification was performed as follows: initial denaturation for 2 min at 94°C followed by 30 cycles at 94°C for 1 min for denaturation, annealing at 59°C for 30 sec and extension at 72°C for 1 min. Final extension was carried out at 72°C for 5 min.

Detection of E. coli pathotypes

The targeted genes for *E. coli* pathotypes included enterohemorrhagic *E. coli* (EHEC), enteropathogenic *E. coli* (EPEC), enteroaggregative *E. coli* (EAEC), enterotoxigenic *E. coli* (ETEC) and diffusely adherent *E. coli* (DAEC) were amplified using oligonucleotide primer pairs. The primers and expected sizes of amplicons are listed in Table 1 (Gómez-Duarte *et al.*, 2009). PCR reaction mix and detection of amplified fragments were carried out as

above. DNA amplification was performed as follows: initial denaturation for 2min at 94°C followed by 40 cycles at 92°C for 30 sec for denaturation, annealing at 59°C for 30 sec and extension at 72°C for 30 sec. Final extension was carried out at 72°C for 5 min.

Results

Estimation of bacterial level of contamination

The total aerobic bacterial count ranged between 4.3 \log_{10} to 5.7 \log_{10} cfu/g for frozen meat and 6.95 \log_{10} to 7.78 \log_{10} cfu/g for fresh meat. MacConkey agar showed that 95% of samples were lactose fermenter with bright pink color colonies. XLD agar showed that, 22.5% of samples had colonies with black centers. Results also showed that 65% of the subcultured samples on MSA were mannitol fermenters.

Detection of Salmonella spp., S. aureus and ETSA

The prevalence of *Salmonella* spp., *S. aureus* and both in studied meat samples was 17.5% and 22.5% and 7.5%, respectively. The distribution of these pathogenes in meat types are shown in Table 2. The prevalence of staphylococcal enterototoxin genes among *S. aureus* isolates was 16.7%, 0.0%, 8.3%, 8.3% and 25% for *sea, seb, sec, sed* and *see*, respectively. *Sea* and *see* were found in combination in 16.7% of the studied samples. Two beef meat samples, *FemA*⁻ and non mannitol fermenter; one carried sec and the other carried see were detected.

Source	No. of samples	<i>E. coli</i> pathotypes (Uni-infection)							
		EHEC	EPEC(bfp	EAEC	DAEC	ETEC			
		$(VT^+ + eae^+)$	$A^+ + eae^+$)	$(aggR^{+})$	$(daaE^{+})$	LT^+	ST ⁺	LT^+ and ST^+	
Beef	15	0(0%)	0(0%)	1 (6.6%)	0 (0%)	0 (0%)	9 (60%)	4 (26.6%)	
Chicken	15	0(0%)	0 (0%)	1(6.6%)	0 (0%)	0 (0%)	7 (46.6%)	2 (13.3%)	
Turkey	10	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	2 (20%)	0 (0%)	
Total n (%)	40	0(0%)	0(0%)	2(5%)	0 (0%)	0 (0%)	18 (45%)	6 (15%)	

Table 4. Prevalence of uni-infected E. coli pathotypes in studied meat samples

Table 5. Prevalence of co-infected *E. coli* pathotypes in tested meat samples

E. coli pathotypes						Source and number of samples				
EHEC	EPEC	ETEC		EAEC	Beef	Chicken	Turkey	Total		
(VT^++eae^+)	(bfpA ⁺ +eae ⁺)	ST^+	LT^{+}	$aggR^+$						
+ve	-ve	+ve	-ve	-ve	1	1	0	2		
-ve	+ve	+ve	+ve	-ve	1	0	0	1		
-ve	-ve	+ve	+ve	+ve	0	1	0	1		
+ve	-ve	+ve	-ve	+ve	1	0	0	1		
+ve	-ve	-ve	-ve	+ve	1	0	0	1		
+ve	+ve	-ve	-ve	-ve	2	0	0	2		

+ve: present ; -ve: absent

Prevalence of staphylococcal enterototoxin genes among *S. aureus* isolates in meat samples are shown in Table 3.

Detection of E. coli and pathotypes

The results showed that 95% of meat samples were contaminated with *E. coli*. The prevalence of *E. coli* was 100%, 93.3% and 90% in beef, chicken and turkey meat, respectively. The results showed that 89.5% of meat samples contaminated with *E. coli* belonged to *E. coli* pathotypes tested in this study. The total prevalence of uni-infected samples with EAEC was 5% and with ETEC was 60%. The presence of more than one pathotype was detected in 21% of the tested samples. Prevalence of *E. coli* pathotypes are shown in Tables 4 and 5.

Discussion

Molecular approaches especially PCR-based technique is considered as a sensitive detection method for specific pathogens. Multiplex PCR assay seems tobe a useful technique for rapid and specific detection of pathogens in food and has been used for the control and prevention of foodborne epidemics (Kawasaki *et al.*, 2009). The findings of the current study showed heavy bacteriological load in different meat types with a total viable count ranging from 4.3 \log_{10} to 5.7 \log_{10} cfu/g for frozen meat and 6.95 \log_{10} to 7.78 \log_{10} cfu/g for fresh meat. This heavy load is considered as an indicator for short shelf life of meat. Such heavy load of bacterial contamination of meat and meat products was also reported to ranged from 5.5 \log_{10} CFU/g to 9 \log_{10} CFU/g (Arain *et*

al., 2010; Awny et al., 2010; Abdellah et al., 2013; Anihouvi et al., 2013). The finding of high count of viable mesophilic bacteria in our study is most likely an indication of open-air meat spoilage. Fresh meat that contains 5 \log_{10} CFU/g to 6 \log_{10} CFU/g of background organisms are inherently safer than those that contain less bioload; however, this hypothesis applies only to harmless bacteria (Jay, 1996). Most of foodborne pathogens have a zoonotic origin and have reservoirs in healthy food animals from which they spread to an increasing variety of foods. Salmonella and S. aureus are the most common and frequent pathogens responsible for food poisoning and food related infections (Costa et al., 2012). According to WHO, 25% of the diarrhea in foodborne illness is caused by food infected with E. coli (WHO, 2006).

Enterotoxigenic S. aureus is one of the most economically important foodborne pathogen worldwide. Results of this research showed that 30% of meat samples were contaminated with S. aureus, and 75% were toxigenic. The prevalence of S. aureus in different food products ranged from 12% to 51% (Adwan et al., 2005; Awny et al., 2010; Vázquez-Sánchez et al., 2012; EI-Jakee et al., 2013). The prevalence of enterotoxigenic S. aureus in different food products ranged from 5% to 100% (Adwan et al., 2005; Vázquez-Sánchez et al., 2012). The finding of two samples which were sec^+ or see^+ but *FemA*⁻ and non mannitol fermenter is most likely to indicate that these samples were contaminated with Staphylococcus coagulase-negative. Such finding is in agreement with previous report on association of such genes with coagulase-negative as well as coagulase-positive staphylococci (Podkowik et al.,

2013). Detection of toxin genes by PCR allows the determination of potentially enterotoxigenic pathogen irrespective of whether the strain produces the toxin or not. For this reason, PCR may be considered more sensitive than immunological methods that determine staphylococcal enterotoxins production. Staphylococcal enterotoxins A-E are thermostable and also resistant to gastrointestinal proteases such as pepsin, explaining its ability to remain active after ingestion. Therefore, the presence of *S. aureus* in food can be considered a potential health risk (Adwan *et al.*, 2005).

Among various foodborne pathogens, Salmonella serotypes are the most common bacteria responsible for foodborne gastroenteritis. There are more than 2500 serovars of Salmonella and all are considered as pathogenic. Salmonella is considered as a zero tolerance organism in foods and should not be present in food, thus the testing of Salmonella is mandatory. Salmonella is found anywhere in nature, including the digestive tracts of different animals, poultry products, milk products and seafood. Raw chicken meat is known to be the major source for Salmonella food poisoning (Chen et al., 2008). The prevalence of Salmonella in different food products ranged from 2% to 100% (Cohen et al. 2007; Aftab et al., 2012; Iyer et al., 2013; Anihouvi et al., 2013; Adeyanju and Ishola, 2014). The findings of the current study showed that 25% of the tested meat samples were contaminated with Salmonella. The incidence of Salmonella in meat samples is an alarming figure and more attention is required in this respect.

E. coli has been implicated as an agent of diarrheal disease. Diarrheagenic strains of E. coli can be divided into five main categories on the basis of distinct epidemiological and clinical features, specific virulence factors, and association with certain serotypes: EAEC, EHEC, EIEC, EPEC, DAEC and ETEC (Nguyen et al., 2005; Gómez-Duarte et al., 2009). Our results showed that 95% of meat samples were contaminated with E. coli, of which 89.5% were diarrheagenic. The prevalence of E. coli in different food ranged from 11% to 100% (Zhao et al., 2001; Ukut et al. 2010; Abdellah et al., 2013; Iyer et al., 2013; Adeyanju and Ishola, 2014). High occurrence of E. coli and/or diarrheagenic E. coli can be explained due to that this pathogen is a part of the normal intestinal flora in most animals. In 2009, Lee *et al.*, reported the occurrence of 39 pathogenic E. coli isolates recovered from different meat types. The isolates were categorized into three virulence groups, comprise of ETEC (43.6%), EHEC (35.9%), and EPEC (20.5%) (Lee et al. 2009).

Variations in the prevalence of foodborne

pathogens from different food samples in different studies could be due in part to several factors including: differences in the reservoir, ecological origin of pathogenic strains, sensitivity of detection methods, detected genes, number of samples, type of sample, time of sampling and storage conditions (Zhao *et al.*2001; Adwan *et al.*, 2005). The finding of high level of bacterial contamination as well as the occurrence of virulence factors in food pathogens strongly indicates the need for the implementation of surveillance programs for food products in Palestine

Acknowledgement

This work was supported by Deanship of Graduate Studies, Aan-Najah National University-Palestine.

References

- Abdellah, E., Fouzia, R. F. and Bouchra, O. 2013. Prevalence and antibiogram study of *Escherichia coli* and *Staphylococcus aureus* in turkey meat in Morocco. Pharmaceutica Analytica Acta 4(9): 270.
- Abu Elamreen, F. H., Abed, A. A. and Sharif, F. A. 2007. Detection and identification of bacterial enteropathogens by polymerase chain reaction and conventional techniques in childhood acute gastroenteritis in Gaza, Palestine. International Journal of Infectious Diseases 11(6): 501-507.
- Adeyanju, G. T. and Ishola, O. 2014. *Salmonella* and *Escherichia coli* contamination of poultry meat from a processing plant and retail markets in Ibadan, Oyo State, Nigeria. Springer Plus 3: 139.
- Adwan, G., Abu-Shanab, B. and Adwan, K. 2005. Enterotoxigenic *Staphylococcus aureus* in raw milk in the North of Palestine. Turkish Journal of Biology 29: 229-232.
- Adwan, G., Adwan, K., Jarrar, N. and Salameh, Y. 2013. Prevalence of *seg, seh* and *sei* genes among clinical and nasal swab of *Staphylococcus aureus* isolates. British Microbiology Research Journal 3(2): 139-149.
- Adwan, G. M. and Adwan, K. M. 2004. Isolation of shiga toxigenic *Escherichia coli* from raw beef in Palestine. International Journal Food of Microbiology 97: 81-84.
- Adwan, K., Abu-Hasan, N., Essawi, T. and Bdir, M. 2002. Isolation and characterisation of Shiga toxigenic *Escherichia coli* strains from northern Palestine. Journal of Medical Microbiology 51(4): 332-335.
- Aftab, M., Rahman, A. M., Qureshi, M. S., Akhter, S., Sadique, U., Sajid, U. and Zaman, S. 2012. Level of *Salmonella* in beef of slaughtered cattle at Peshawar. Journal of Animal and Plant Sciences 22(2 Suppl.): 24-27.
- Anihouvi, D. G. H., KAyodé, A. P. P., Anihouvi, V. B., Azokpota, P., Kotchoni, S. O. and Hounhouigan, D. J. 2013. Microbial contamination associated with the processing of tchachanga, a roasted meat product.

African Journal of Biotechnology 12(18): 2449-2455.

- Arain, M. A., Rajput, I. R., Khashheli, M., Faraz, S., Devrajani, K. and Fazlani, S. A. 2010. Evaluation of microbial quality of goat meat at local market of Tando Jam. Pakistan Journal of Nutrition 9(3): 287-290.
- Awny, N. M., Abou Zeid, A. A. M. and Abdo, M.A. 2010. Prevalence of toxigenic bacteria in some Egyptian food. Proceeding of Fifth Scientific Environmental Conference. Zagazig Uni. 107-124.
- Becker, K., Roth, R. and Peters, G. 1998. Rapid and specific detection of toxigenic *Staphylococcus aureus:* use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. Journal of Clinical Microbiology 36(9): 2548-2553.
- Chen, W-T., Tsai, S-J., Shih, D. Y-C., Wang, Y-G. C. and Chyr ,C-Y. L. 2008. An improved pre-culture procedure for the detection of *Salmonella* in frozen chicken mat by Duplex Polymerase Chain Reaction. Journal of Food and Drug Analysis 6(5): 83-90.
- Cohen, N., Ennaji, H., Bouchrif, B., Hassar, M. and Karib, H. 2007. Comparative study of microbiological quality of raw poultry meat at various seasons and for different slaughtering processes in Casablanca (Morocco). The Journal of Applied Poultry Research 16: 502–508.
- Costa, L. F., Paixão, T. A., Tsolis, R. M., Bäumler, A. J. and Santos, R.L. 2007. Salmonellosis in cattle: advantages of being an experimental model. Research in Veterinary Science 93: 1-6.
- De Giusti, M., De Medici, D., Tufi, D., Marzuillo, C. and Boccia, A. 2007. Epidemiology of emerging foodborne pathogens. Italian Journal of Public Health 4(1): 24-31.
- EI-Jakee, J., Marouf, S. A., Ata, N. S., Abdel-Rahman, E. H., Abd El-Moez, S. I., Samy, A. A., Walaa, E. and El-Sayed, W. E. 2013. Rapid method for detection of *Staphylococcus aureus* enterotoxins in food. Global Veterinaria 3: 335-341.
- Gómez-Duarte, O. G., Bai, J. and Newell, E. 2009. Detection of *Escherichia coli, Salmonella* spp., *Shigella* spp., *Yersinia enterocolitica, Vibrio cholerae*, and *Campylobacter* spp. enteropathogens by 3-reaction multiplex polymerase chain reaction. Diagnostic Microbiology and Infectious Disease 63(1): 1-9.
- Hsu, S. C., Chiu, T. H., Pang J. C., Hsuan-Yuan, C. H., Chang, G. N. and Tsen, H. Y. 2006. Characterisation of antimicrobial resistance patterns and class 1 integrons among *Escherichia coli* and *Salmonella enterica* serovar Choleraesuis strains isolated from humans and swine in Taiwan. International Journal of Antimicrobial Agents 27: 383-391.
- Iyer, A., Kumosani, T., Yaghmoor, S., Barbour, E., Azhar, E. and Harakeh, S. 2013. *Escherichia coli* and *Salmonella* spp. in meat in Jeddah, Saudi Arabia. Journal of Infection in Developing Countries 7(11): 812-818.
- Jay, J. M. 1996. Microorganisms in fresh ground meats: the relative safety of products with low versus high

numbers. Meat Science 43: 59-66.

- Kawasaki, S., Fratamico, P. M., Horikoshi, N., Okada, Y., Takeshita, K., Sameshima, T. and Kawamoto, S. 2009. Evaluation of a multiplex PCR system for simultaneous detection of *Salmonella* spp., *Listeria monocytogenes*, and *Escherichia coli* O157:H7 in foods and in food subjected to freezing. Foodborne Pathogens and Disease 6(1): 81-89.
- Kawasaki, S., Kusano, K., Arai, R., Komeda, T., Kamisaki-Horikoshi, N. and Kawamoto, S. 2012. Multiplex PCR detection of *Salmonella* spp., *Listeria monocytogenes*, *Escherichia coli* O157:H7, and *Staphylococcus aureus* in processed foods using [TA10] simultaneous growth broth. Journal of Food, Agriculture & Environment 10(3 and 4): 261-266.
- Lee, G. Y., Jang, H. I., Hwang I. G. and Rhee, M.S. 2009. Prevalence and classification of pathogenic *Escherichia coli* isolated from fresh beef, poultry, and pork in Korea. International Journal of Food Microbiology 134(3): 196-200.
- Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin. P. M. and Tauxe, R. V. 1999. Food-related illness and death in the United States. Emerging Infectious Diseases 5(5): 607-625.
- Nguyen, T. V., Le Van, P., Le Huy, C., Gia, K. N. and Weintraub, A. 2005. Detection and characterization of diarrheagenic *Escherichia coli* from young children in Hanoi, Vietnam. Journal of Clinical Microbiology 43(2): 755-760.
- Podkowik, M., Park, J. Y., Seo, K. S., Bystroń, J. and Bania, J. 2013. Enterotoxigenic potential of coagulasenegative staphylococci. International Journal of Food Microbiology 163(1): 34-40.
- Tsen, H. Y., Liou, J. W. and Lin, C. K. 1994. Possible use of a polymerase chain reaction method for specific detection of *Salmonella* in beef. Journal of Fermentation and Bioengineering 77: 137-143.
- Ukut, O. E., Okonko, I. O., Ikpoh, I. S., Nkang, A. O., Udeze, A. O., Babalola, T. A., Mejeha, O. K. and Fajobi, E.A. 2010. Assessment of bacteriological quality of fresh meats sold in Calabar metropolis, Nigeria. Electronic Journal of Environmental, Agricultural and Food Chemistry 9(1): 89-100.
- Vázquez-Sánchez, D., López-Cabo, M., Saá-Ibusquiza, P. and Rodríguez-Herrera, J. J. 2012. Incidence and characterization of *Staphylococcus aureus* in fishery products marketed in Galicia (Northwest Spain). International Journal of Food Microbiology 157(2): 286-296.
- World Health Organization (WHO). 2008. Foodborne disease outbreaks: Guidelines for investigation and control. WHO, Geneva.
- World Health Organization (WHO). 2006. WHO Global Salm Surv Progess Report 2000 - 2005. WHO, Geneva.
- Zhao, C., Ge, B., De Villena, J., Sudler, R., Yeh, E., Zhao, S., White, D. G., Wagner, D. and Meng, J. 2001. Prevalence of *Campylobacter* spp., *Escherichia coli*, and *Salmonella* serovars in retail chicken, turkey, pork, and beef from the Greater Washington, D.C.,

area. Applied and Environmental Microbiology 67(12): 5431-5436.